
www.ietdl.org

2
©

Published in IET Software
Received on 7th April 2012
Revised on 28th April 2013
Accepted on 3rd June 2013
doi: 10.1049/iet-sen.2012.0163
58
The Institution of Engineering and Technology 2013
ISSN 1751-8806
Formal framework for specifying dynamic
reconfiguration of adaptive systems
Jaber Karimpour, Robab Alyari, Ali A. Noroozi

Department of Computer Science, Faculty of Mathematics Science, University of Tabriz, 29 Bahman Blvd., 5166616471

Tabriz, Iran

E-mail: Karimpour@tabrizu.ac.ir

Abstract: In the real-world, there are many types of software systems and software engineers always deal with changes. The value
of large systems decreases significantly as the requirements and operational environment change over time. Modern software
systems are expected to have dynamic reconfigurations to cope with failure and changes. Software adaptation techniques try
to overcome the change problem by reconfiguration. In this study, at first, the authors present a formal framework to represent
the whole system and then, build a mathematical model called ‘adaptor’ based on adaptation contract and system architecture.
The adaptor is used to define automatic fit between two different components of the system. Finally, for specifying the whole
adaptor system the authors will introduce adaptor network using synchronisation vectors.
1 Introduction

New large computer systems are built from different
components with uncertain behaviour. Behaviour of the
components and the requirements of the system may change
over time. The success of component-based systems
depends on the capability of adapting to unpredictable
situations or sudden changes. Software systems need to
discover how they can exchange those parts which do not
work properly or do not fit into requirements. It means that
the system should reconfigure itself when it needs to
upgrade or has an error that causes the system to fail in
runtime.
An investigation in literature shows that the desirable

properties of the adaptive systems architecture are as
follows [1–3]:

† Grounded: The architecture needs to be able to take into
account the ‘real-world’. It needs to represent more than
just logical relationship between or within abstract
computational entities.
† Exogenous: The architecture cannot assume it has access to
internal configuration or state of the components that build up
the system. Coordination of behaviour or measurement of
non-functional properties of the components must be
external or exogenous to those components.
† Self-managed: It is commonly accepted that all parts of a
complex system should be able to be independently
described, implemented and deployed in modules [3]. The
complexity of managing the relationship between entities in
a system increases dramatically as the number of
heterogeneous entities increases. In order to handle this
complexity, management of the system should be
distributed down to the level of modules rather than
globally managing the system. In other words, these
modular composites should be self-managed, as much as
possible.
† Recursive: If description of the system at different levels of
granularity and abstraction is based on the same architecture
meta-model, the efficiency of the meta-model and
comprehensibility of the design increases dramatically. For
example, one of the strengths of the object-oriented
methodology is that objects are composed of other objects,
those which are also made of other objects too, and so on.
† Practical: The architectural meta-model concepts should
be as simple as possible. Adaptive architectural model
should ideally be based on a few powerful concepts that
software developers can readily comprehend and apply.

1.1 Problem

The main problem addressed in this paper is how to build
adaptive software systems that can reliably achieve system
level goals in volatile environments, where the system itself
may be built from components of uncertain behaviour, and
where the requirements for software system may be changing.
To solve this problem, the system should be equipped with

rich interfaces enabling external access to its functionality
with the following specific characteristics:

1. Must have precise and sound syntax and semantics.
2. Must have interfaces description by signatures (operation
names and types) and behaviours (interaction protocols).
3. Must solve the problem of consistency between two
different parts.
4. Must be suitable for hierarchical description of component
architecture.
IET Softw., 2013, Vol. 7, Iss. 5, pp. 258–270
doi: 10.1049/iet-sen.2012.0163



Fig. 1 Representing dynamic architectures [1]
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5. Must allow the possibility of formally reasoning about the
system behaviour.
6. Must allow the possibility of system modelling, simulation
and verification.

Our solution to this problem, stated as our claim in Section
1.3, satisfies items 1–4, setting the stage for future work on
the next two items.

1.2 Motivation

Beer’s [4] viable system model (VSM) presents a
control-theoretic approach to recursively structured adaptive
systems, as well as adapting to changes in itself or its
environment. We can say, VSM differentiates various types of
control and also shows how control can be related to
organisational structure, and how complexity can be managed
by this structure. Structure means construction or framework
of identifiable elements of a system (like components, entities,
parts or …) and the way in which these elements are
connected to each other. The structure defines: (i) which
elements are connected to each other in a direct or indirect
way and (ii) in which range, elements can communicate with
each other. Tanenbaum and Steen [5] believe the main
assumption in adaptive software is that the software should be
allowed to modify itself with environmental changes. We
know system engineers can halt the system and repair it but
some kinds of systems cannot be shut down. Software
adaptation and dynamic reconfiguration are the only way to
overcome this problem and improve such systems.
Most of the works on adaptation use features like signature,

protocol, quality of service and semantics. A lot of them
prefer full automation of the process (restrictive approaches)
[6–8] and the others support the specification of adaptation
scenarios (generative approaches) [9–11]. The ones that
advocate the first class believe in solving interoperability
issues by decreasing the behaviour that may lead to
mismatches but on the other hand, generative approaches
build adaptors automatically from abstract specification,
called adaptation contract to solve how the mismatches can
be annihilated.
A good adaptation idea could be the ability of a system to

regulate itself and change its structure as it interacts with the
environment. This change of structure is performed in two
ways. The first is the change or interchange of the elements
within the structure like adding or removing them, the
second way is modification of relationships between the
elements that make up the system, like changing the ways
in which these elements interact with each other. If the
adaptive system has loosely coupled elements, it must have
ways of determining these kinds of changes at runtime so
that the system maintains its viability. A viable system is a
system which could continue to survive (and, if required,
continue to meet its goals) in uncertain and changing
environments. Adaptation is the ability to not only continue
to survive in uncertain and changing environments, but also
to maintain the quality of meeting goals.
‘Software architecture’ is a high-level view of a software

system as a configuration of components and connectors. In
the software architecture context, adaptive architecture can
be defined as dynamic structure and management where
management activities to monitor the system, reconfigure
the structure and regulate the behaviour over that structure.
We intend to develop a mathematical model called

‘Adaptor’ based on the adaptation contract and the system
architecture to specify dynamic reconfiguration of a system.
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1.3 Claim

We present a framework for satisfying items 1–4 of our
problem and some properties for adaptive systems. To
achieve this framework, we apply the work of Jin et al. [12]
and the work of Isazadeh and Karimpour [13] to extend
Cansado et al. work [14] about a formal framework for
structural reconfiguration of components under behavioural
adaptation.

1.4 Paper outline

The remainder of this paper is organised as follows. In
Section 2, we give a brief review of the previous work and
provide some background on formalisms that will be used
throughout the paper. Section 3 describes our method by
presenting the new notation. In this section, at first, we
introduce the ‘Adaptor’ and then expand our method in
hierarchical components by defining network of ‘Adaptors’.
In Section 4, a case study is presented. Finally, the paper is
included in Section 5 with a summary of results.

2 Background and evaluation

In 1995, Shaw [15] proposed that, in some types of
application, an architectural idiom based on control theory
is appropriate. Since then many approaches have been
proposed that develop ways to control or manage
components. Just having a dynamic architecture with some
management capability does not guarantee that the software
system itself will be viable, that is, it will be able to survive
and continue to meet its goals by maintaining its
organisational integrity.

2.1 Approaches to representing adaptive
architecture

Most of the research efforts in adaptive software architecture
address one or more of the above properties of reconfigurable
systems. Fig. 1 shows two categories of dynamic
architectures, structure-centric and quality-centric. As
illustrated in Fig. 1, structure-centric category shows the
architectures that are primarily concerned with structure,
and making sure that the dynamic structure is well-formed.
Structure offers an account of what a system is made of,
like a configuration of items, a collection of inter-related
components or services. These approaches, which are
primarily concerned with functional change, are largely
formal. They are motivated both by the need to compose
functionally well-formed systems, and the need to express
the dynamic transformation of the structure. Bradbury [16]
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Fig. 2 Plastik’s system architecture [17]
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surveys a number of formal dynamic architecture languages
and evaluates the extent to which the formalisms support
the specification of self-managing systems. The formalisms
include graph-based, logic, process algebra and other
approaches. Each approach has various strengths. Bradbury
evaluates the languages in terms of component and
connector addition/removal to/from the structure.
Formalisms also vary according to whether they emphasise
the behaviour of the system (as, say, naturally expressed in
a process algebra) as opposed to an emphasis on the
structure of the components and connectors (as, say,
naturally expressed in a graph grammar).
The second category, that is, quality-centric descriptions,

concentrates on the measurement of the qualities of
interactions over a structure. Manager in these systems
control the quality of interactions. These architectures are
not mutually exclusive but, rather, represent different
dominant themes for describing frameworks. The focus of
these approaches to describing software architecture is
non-functional transformation. These are concerned with
representing structures in which changing performance and
other qualities (reliability, resource allocation, security etc.)
can be represented and managed. As shown in Fig. 1,
classification of these descriptions can be according to the
mechanisms for achieving configuration and/or regulation.
Some of the frameworks, such as contract-oriented
frameworks, can be seen as a mix of structure- and
quality-centric descriptions. Also, a distinction can be made
between contract-oriented and control-oriented approaches.
Frameworks that use control-oriented techniques regulate

entities by monitoring the changes in the values of control
variables, and then setting process variables. On the other
hand, contract-oriented approaches regulate the interactions
between entities by defining permissible types of interaction
and performance levels of those interactions. Both
approaches have some sort of monitoring mechanism to
ensure that the required level of performance is being met,
and take action to correct any underperformance. In control
systems, this involves the controller changing some
property of the controlled entity. In contracted systems, the
entity needs to autonomously meet the requirement.
Contracts can be viewed as connectors that define the
structural relationships in a system, because they can be
used to define relationships between components. Owing to
this property, contracts (or connector types) can be used to
describe both the structure and quality of relationships, as
illustrated in Fig. 1.

2.2 Structure-centric frameworks

Structure-centric architectural descriptions can be classified as
those that define reconfiguration operations and tactics, those
that define constraints and the ones that define valid
configurations. One of the structure-centric frameworks is
‘Plastik’ [17].
‘Plastik’ is a framework that supports a formally specified

runtime reconfiguration. The architecture description
language (ADL) has two sub-levels, as illustrated in Fig. 2.
Definition of generic patterns (e.g. protocol stack style) by
setting constraints so that, types of component, connectors
and interface operations (‘properties’) can be composed, are
in the style level. A configuration, defined by a style, is
encapsulated in a ‘component framework’. The instance
level particularises the style for a specific context.
The ‘system configurator’ is also divided into two levels.

The singleton architectural configurator is responsible for
260
© The Institution of Engineering and Technology 2013
accepting and validating reconfiguration requests from the
ADL levels, whereas each deployed ‘component
framework’ has a runtime configurator that manages the
runtime level. Constraints at the ADL level are compiled
into finite-state machines in the runtime configurators.
These configurators are implemented in a scripting language
that is generated by a compiler.
Plastik supports both the ‘programmed’ and ‘ad hoc’

reconfiguration. In ad hoc reconfiguration, system specifies
certain invariants in which configurations cannot violate.
This kind of configurations are not specified at the ADL
level (only the constraints are specified), but change can be
initiated from either the ADL and runtime levels. The other
reconfigurations that can be foreseen at design time are
programmed reconfigurations and are expressed as
‘predicate-action’ specifications.
Combining high-level reconfiguration concepts with a

robust runtime component framework is the key advantage
of Plastik’s approach. However, the problem is
synchronisation between architectural layers and runtime
layers that are separated into two representations connected
by compiled scripts. This is particularly so because change
can be initiated at either level. There is also no discussion
about the runtime conditions that target reconfiguration can
hold, nor is there a way to explicitly model non-functional
requirement or change. The addition and removal of
components are the only reconfiguration operations.
Monitoring is not a part of the framework but is something
that, it is claimed, can be provided by the components or a
third party. Also, key aspects of the system design have
been trialed, rather than being fully implemented.
2.3 Control-oriented frameworks

Control-oriented approaches to architectural adaptation adopt
the paradigm of ‘software systems being control systems’.
This paradigm is suggested by Shaw [15]. These
frameworks define a control-loop with three phases: sense–
evaluate–act. A separate control component(s) or layer that
monitors the system and adapts the structure to changing
environments or requirements is the main aspect of
control-oriented approaches.
Policy-based-self-adaptive model (PobSAM) [18] is a

control-oriented framework. A PobSAM model is
composed of a collection of autonomous managers and
managed actors. Autonomous managers are meta-actors
responsible for monitoring and handling events by
enforcing suitable policies. Each manager has a set of
configurations containing adaptation policies and governing
policies. A manager changes its configuration dynamically
in response to the changing circumstances according to
adaptation policies. The behaviour of managed actors is
IET Softw., 2013, Vol. 7, Iss. 5, pp. 258–270
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either governed by managers or cannot be directly controlled
from outside. Governing policies are the rules that are applied
while the system is in a stable state. Adaptation policies are
rules that govern the transient states between two stable
states while the system is changing. The set of manager’s
configurations is not fixed and may change dynamically by
growing and evolving the system. In PobSAM, the
managers monitor the actor’s behaviour through the view
layer and direct and adapt the system behaviour.
Another control-oriented approach is Rainbow [19]. This

architecture assumes that the management framework has
access to some measurement, resource discovery and
affecting mechanism to observe and change the functional
system. In Rainbow, adaptation strategies are globally
defined across the architecture. The authors point out that
having a central representation of the architecture makes the
system subject to single-point failure. Application examples
focus on network reconfiguration.

2.4 Contract-oriented frameworks

The control-oriented frameworks focus on the monitoring and
control of components through the sensing and manipulation
of control variables. Contract-based frameworks, on the other
hand, control the system through the (dynamic) specification
of the relationships which components must follow. There are
differences in the types of contract between frameworks.
Some contracts define the valid configuration(s) in the
composites. Other contract-based frameworks view
contracts as exercising control by constraining the
interactions between components. In this sense, contracts
are both structure-centric and quality-centric descriptions, as
discussed (Fig. 3). Contracts have the ability to define the
existence of relationships (hence structure), as well as the
quality of those relationships. Some frameworks, such as
ConFract [20] and the framework proposed in this paper,
have contracts that perform both these functions. As
illustrated in Fig. 3, Colman [1] believes there are two
methods of defining and controlling the quality of
relationships. The first method is to control the interface of
the component involved in any association so that only
behaviour acceptable to the contract can occur over that
interface. This approach characterises the non-functional
properties of the component interface irrespective of its
actual relationships.
The second method focuses on characterising and

controlling the connectors rather than characterising the
components. This is the approach adopted in this paper.
Non-functional relationships can always be reduced to an
Fig. 3 Aspects of contracts and methods of controlling interactions
[1]
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abstraction over functional relationships. Although we tend
to think of a non-functional requirement as a property of an
entity (role, object, component etc.), it is always a
requirement in relation to some other entity (or entities). In
terms of a contract, a non-functional property of a
relationship has both a requirement (obligation) and a
state-of-fulfilment of that obligation (performance).
Non-functional properties can be viewed as abstractions
across functional interactions, even though many such
properties (e.g. availability, fault tolerance) may be
invariant for all of a component’s relationships.
In this area, a great deal of research has been done. Camara

et al. [21] use symbolic transition system (STS) notation for
developing adaptation contracts. STS provides protocol of a
component or services on its interface to verify and specify
the proposed adaptation contract. Also Salaün and
coworkers [22] define a behavioural model inspired by the
π-calculus to specify behavioural interfaces of components.
They also choose to specify behavioural interfaces using
labelled transition systems (LTSs) [2] as notation. This is
very convenient for developing composition algorithms
since they rely on the traversal of the different states of the
components, and the transition function of LTS descriptions
makes the access to the set of states and their connections
straightforward. However, the other part of this framework
is dynamic reconfiguration. After proper connections
between components are established using contracts,
reconfiguration abilities are added to the framework too.
Similar to the contract specifications, there is a wide range
of techniques that can support reconfiguration.
Huang et al. [23] facilitate the development of the

dynamically partially reconfigurable system (DPRS), with a
model-based platform-specific co-design methodology for
DPRS. For DPRS analysis and validation, a model-based
verification and estimation framework is proposed to make
model-driven architecture more realistic and applicable to
the DPRS design. In the system implementation phase, the
OS4RS design is integrated into the DPRS design
methodologies [24]. Thus, reconfigurable hardware
functions are executed as software applications that can be
dynamically created and removed. Cansado et al. [14] use
LTS for their formal model that includes behavioural
adaptation. Their framework provides structural
reconfiguration of components as well. In this paper, we try
to improve Cansado’s work by using RTSs for the system
and contracts specification. We use synchronisation vectors
to composite ‘Adaptors’ in a hierarchical manner and
achieve reconfiguration patterns.
2.5 Reactive transition system

A good idea to make use of contracts as connectors is to have
an approach that includes: (i) a formal and sound language,
(ii) a graphical notation to define transitions and (iii)
composition and hierarchical techniques to facilitate
interactions via several components and composites. In this
paper, reactive transition system (RTS) is selected to
achieve the above properties.

Definition 2.1: A RTS is defined as L = (s0, S, Σ, Δ), where

† S is the set of states and s0∈ S is the initial state;
† Σ is set of events, consisting of three mutually disjoint sets
of input events ΣI, output events ΣO and internal events ΣH;
† Δ⊆ S × Σ × S is the set of steps.
261
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RTSs are like LTSs. The main distinction is that RTSs have

input, output and internal events. This distinction helps the
system decide when to produce an output, whereas the
environment decides when to provide an input.
The composition of RTSs is defined in terms of

synchronisation vectors. Synchronisation vectors were
introduced by Arnold and Nivat (Arnold 1994) [2]. In this
way, not only peer-to-peer but also multicast and broadcast
communication among processes can be described.

Definition 2.2: Consider sets E0, E1, …, En, a relation
R #

∏
0≤i≤n Ei, and a set E #

⋃
0≤i≤n Ei such that E ∩ Ei ∩

Ej ∩Ø for all i, j: 0≤ i, j≤ n ∧ i = j. Let projections πi:
R→ Ei for 0≤ i≤ n and sets of keys κr = {πi(r)∈ E|0≤ i≤
n} for r∈R. Then R is said to be indexed by E if there exists:

† Exactly one key per tuple: |κr| = 1 for all r∈R;
† At most one occurrence per key: ∀e∈ E, ∃r∈R, e ∈ κr
implies ∀r′ [ R {r}, e � kr′ .

We will use such a relation to capture the synchronisation
patterns between RTSs. These patterns may have multiple
input events but exactly one output event, which will then
individually provide a key and cumulatively provide the
index for the relation. An output event is also involved in at
most one synchronisation pattern. In defining RTS
networks, we assume a special symbol ε which is not an
event of any RTS.

Definition 2.3: A RTS ‘network’ is a tuple N = (Σ, W, R),
where Σ is a set of external events of the network,
consisting of two disjoint sets of input events ΣI and output
events ΣO. We let S# = S< e{ } that ε is not an event of
any RTSs.

† W is a finite set of RTSs. We let S#
l = Sobv

l < {e} for all
l∈W;
† R # S# ×∏

l[W S#
l is a relation indexed by S

I ⋃
l[W SO

l .

The relation R is called a set of synchronisation vectors. A
synchronisation vector in the set describes a particular
synchronisation pattern between the component RTSs. In
order to give RTS networks a sound interleaving semantics,
we require exactly one output event in each synchronisation
vector, because output is non-blocking in asynchronous
applications. We also require that at most one
synchronisation vector can be matched for a particular
output event. (Σobv = ΣO ∪ ΣI)

Definition 2.4: Consider a RTS network N = (ΣN, W, R). The
synchronised product of N is a RTS L = (s0, S, Σ, Δ), where

† s0 = ∏
l[W s0l and S #

∏
l[W Sl is the smallest set such

that s0∈ S and ∀s∈ S, (s, e, S′)∈ Δ implies S′∈ S. We
assume projection πl: S→ Sl and let sl = πl(s) and
s′l = pl s

′( )
for l [ W , s, s′ [ S;

† SI
L = SI

N , SO
L = SO

N and
∑H

L #
∏
l[W

Sctrl
l ;

† Δ consist of input steps s, e, s′
( ) |e [ SI

L,
{

∃r [ R, rr = env ^ e = penv r( ) ^ d s, r, s′
( )}

<

(s, e, s) |e [ SI
L,

{
∄r [ R, rr = env

}
,

Output
steps { s, e, s′

( ) |e [ SO
l , ∃ l [ W , r [ R, l = rr ^ e =

penv r( ) ^ sl, pl r( ), s′l
( )

[ Dl ^ d s, r, s′
( )},
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And internal steps { s, e, s′
( ) |∃ l [ W , e [ S

H
l ^ sl,

(
e, s′l) [ Dl ^ (∀g [ W\ l{ }, s′g = sg)}< { s, e, s′

( )|∃ l [
W , e [ SO

L ^ ∃r [ R, e = pl r( ) ^ penv r( ) = e ^ sl, e,s′l
( )

[ Dl ^ d s, r, s′
( )}< s, e, s′

( ) |∃ l [ W , e [ SO
l ^ (

{
∄r

[ R, e = pl r( )) ^ sl, e, s′l
( )

[ Dl ^ (∀g [ W\ l{ }, s′g =
sg }, d s, r, s′

( ) = (∀g [ ir, (sg,pg r( ), s′g) [ Dg) ^ ∀h [(
ir, s

′
h = sh).

Note that, for a RTS network N and a synchronisation
vector r∈R and projection πl: R→ Σl, ρr is called producer
of r and it is a unique RTS l such that pl(r) [ SO

l . Also
the set of consumers of r, denoted by ηr, consists of all
RTSs l such that pl(r) [ SI

l . In addition, an idler of r is a
RTS l such that pl(r) = e and denoted by ir.

Jin et al. [12] provided general definition for components by
specialising reactive systems (RTSs). They described how to
provide services of a component and how to consider
environment assumptions of a component by means of the
component protocols. Isazadeh and Karimpour [13] extended
[12] to describe the system as a hierarchical composition of
some components and proposed a compositional verification
method to verify component-based systems.
3 New framework

In this section, we are going to extend Cansado et al.’s work
[14] using Jin’s work in his PhD [12], and a method proposed
by Isazadeh and Karimpour [13] to present our framework.
For this purpose, at first the association of components, as
the infrastructure of the framework, will be described by
contracts. Then, these associations will be connected to
each other in a larger part, called ‘Adaptor’. ‘Adaptors’ will
specify the configurations of the system. Synchronisation
vectors are exploited to composite and reconfigure
‘Adaptors’ in a network of ‘Adaptors’.
3.1 Adaptation contract

Ourwork is basedon the concept of contractswhich associate two
components. These components could have different behavioural
interfaces or could be components from different systems or
parts, for example, one from server and the other from client
part. Contracts also regulate and help to monitor interactions
between components. They define which interactions are
permissible or required and set arbitrary performance
conditions on the interactions of components and monitor
these interactions for compliance with those conditions. In
this paper, contracts build the structure of ‘Adaptors’.
‘Adaptors’ work based on adaptation contracts and can

automatically fit two different interfaces with each other.
Adaptation contract AC will be used between components,
based on vectors. A vector may involve any number of
components and does not require interactions to occur with
the same kind of interfaces. Moreover, a vector may
synchronise events performed by sub-processes in a
hierarchical style. With having contracts in vectors, they can
be used to enforce sequences of interactions. The
mathematical formalism of adaptation contracts that suite
our work is presented as below.

Definition 3.1: Adaptation contract AC is a set of vectors V =
[part 1: event (D), part 2: event (D)] that:
IET Softw., 2013, Vol. 7, Iss. 5, pp. 258–270
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† Parts 1 and 2 are events in the first and second system parts;
† D∈ (!, ?) is a tuple that stands for the communication
direction. (! For emission and? for reception).

Each event in a vector is executed by exactly one
component and the overall result has impacts on other
components. Actions occur when exactly both events in
parts 1 and 2 happen in the same time. This formalism also
can be used in reusing components. First part can be
interface of reusable components and the second part can
be acceptable interface of the system.
3.2 Work of adaptation contract

We now establish a framework for reconfiguration and
behavioural adaptation. At first an example is presented to
show how adaptation contract can work between client and
server then we define an ‘Adaptor’ and we work with it so
that can easily handle mismatches, and after that we provide
a formal model based on nets for this kind of systems.
We present a client/server system, in which the server may be

substituted by an alternative server component. This example
represents an online shopping center that has two parts, one
for entertainment and another for home shopping. Owners
want to have two servers that works separately in each part.
The client wants to buy CD/DVD, Sport tools, books,
clothes, foods and electronic tools as shown in its behavioural
interface in Fig. 4a. The two servers E and H have
behavioural interfaces depicted in Figs. 4c and 5c, respectively.
Initially, the client is connected to server E, we shall

call this configuration cE. The client and the server agree
on an adaptation contract ACC,E (see Fig. 4b). Under
configuration cE the client cannot buy food because it is not
supported by server E. The latter is implicitly defined in the
adaptation contract (Fig. 4b), because there is no vector
allowing the client to perform the action food!.
In an alternative configuration cH the client is connected to

server H whose protocol is depicted in Fig. 5c. Similarly, the
client and the server agree on an adaptation contract ACC,H
(see Fig. 5b). Under configuration cH, the client can buy
food, clothes and electronic tools.
Fig. 4 Client and server E RTS model and their configurations

a RTS of client C
b Adaptation contract ACC,E
c RTS of server E
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When the client is in server E and wants to buy something
from server H, he/she should sign out from first server and
enter his\her identity again into the second one. We want to
reconfigure cE to cH in order that the client can buy
anything without knowing about our two different servers.
It means, we just substitute E by H in a way that client
does not know about this reconfiguration. We shall study
reconfiguration from cE to cH which substitutes E by H. It
is worth noting that E and H do not have the same
behavioural interfaces and thus we should connect client
with new server that have no mismatches with former
transaction.
3.3 Adaptor

After we modelled our system with RTS, we can substitute it
with ‘Adaptor’ which contains both system and adaptation
contract. In this way we can easily work on networks in
hierarchical manner.

Definition 3.2: Let P be our system that contains two different
parts with their adaptation contract AC between them. To
build an ‘Adaptor’ we do as follows:

† For each event a! [ SO
Pi
, we define a step in Adaptor as v

= {Pi: a!, Ap: a?}, that means if in state Pi a reception to our
system occurs, in Adaptor that state change to emission.
† For each event a? [ S

I
Pi
, we define a step in Adaptor as v

= {Pi: a?, Ap: a!}, that means if in state Pi an emission to our
system occurs, in Adaptor that state change to reception.
† We add an event rS∗i ? that can substitute one Adaptor with
another.

It means that with this definition client and server become a
concrete system called ‘Adaptor’. For this we start with
client’s first request from server and then we add the answer
of server to this request in ‘Adaptor’, again we assume the
clients requests and servers answers to those request and
according to this cycle we built the ‘Adaptor’. The main
point here is that we change all the emissions and
receptions of client and server in ‘Adaptor’.
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Fig. 5 RTS model of client C and server H and their configurations

a RTS of client C
b Adaptation contract ACC,H
c RTS of server H
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In most of other approaches, ‘Adaptors’ are as third-party
components that are in charge of coordinating the parts
involved in the system. Those systems have three parts. In
our approach, for decreasing the overall cost of monitoring,
memory and complexity, we use just one part, that is,
‘Adaptor’. Also, the scalability of the system increases
because adding and removing some parts of the system can
be easily done by just adding and removing producer
vectors of ‘Adaptor’. Adding posterior adaptors into a
network can be done to improve the scalability of the
framework too. It is like adding another vector to the
synchronisation vectors that have mathematical base. These
vectors described more details later.
Fig. 6 Adaptors between client and servers

a Adaptor AC,E
b Adaptor AC,H
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Now, we build ‘Adaptors’ for the pervious example. In that
example, there were two pairs of server and client with
adaptation contract between them. Each vector in adaptation
contracts generates two events in ‘Adaptor’. For example,
vector V1 = (C: name!, E: name?) is divided into two states
in ‘Adaptor’ ACC,E, that is, C: name! and E: name?. Event
rS∗i ? can be in any state that system engineer prefers (Fig. 6).
After creating ‘Adaptor’, the server and the client can work

consistently with each other. Sometimes servers are huge and
can be divided into some parts that are not similar to each
other. This may make working with and finding errors in
the system easier. In this paper, we assume servers are
made from different parts that are irrelative to each other.
IET Softw., 2013, Vol. 7, Iss. 5, pp. 258–270
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3.4 Reconfiguration

Reconfiguration is to substitute one part of system with
another (here, system parts are ‘Adaptors’). This
substitution starts from one state in the first part and ends in
another state in the target part. We denote these transitions
with r*. The important key is to select reconfiguration states
in a way that ‘Adaptor’ substitution is hidden from client.
We assume designers of the system select those states.

Definition 3.3: A reconfiguration contractR = (Ap, ap0
, DR)

is defined as: Ap is the set of ‘Adaptors’ and ap0
is the initial

configuration. DR # Ap × RO × Ap is the set of
reconfiguration operations such that RO⊆ Si* × Sj*, where
S∗i # Api

and S∗j # Apj
. S∗i is the state that reconfiguration

starts and Sj∗ is the state which the new part starts working
from.
Selecting the states that reconfiguration starts and ends
(S∗i , S∗j ) is out of scope of this paper. It is notable that these
states are selected in design time. To reach the target state in
the second part of the reconfiguration, traces can be used.

Definition 3.4: Let L = (s0, S, Σ, Δ) be a RTS. Trace ξ consists
of a set of events such that j = s|s = e.s′; e [ S^{
(s0, e, s) [ D, s′ [ j′} where ξ′ is a trace of L′ = (s, S, Σ, Δ).
With this definition we can introduce ξs, that is, a trace of

any particular RTS from its initial state till the special
states. To make these definitions clear, an example is given.
Assume the ‘Adaptors’ in the previous example. Since the
‘Adaptor’ ACC,E does not have permission to buy food, a
reconfiguration step is added. In the ‘Adaptor’ ACC,H a
step, from which the new configuration will start, should be
selected. In this example, we have: R = (Ap, ap0

, DR)
where Ap = ACC,E, ACC,H

{ }
and ap0

= ACC,E and
DR # ACC,E × RO ×ACC,H such that RO⊆ s1 × s1. It means
that when the configuration reaches to state 1 in the first
‘Adaptor’, the system can reconfigure to the ‘Adaptor’
ACC,H with reconfiguration step r* and then start the new
configuration from state 1 of ‘Adaptor’ ACC,H . The system
reaches to state 1 in the second ‘Adaptor’ with ξ1.
3.5 Network of adaptors

Real scenarios for adaptation often involve several interacting
parts or services that are called ‘Adaptors’ in this paper. With
Fig. 7 Network of Adaptors

IET Softw., 2013, Vol. 7, Iss. 5, pp. 258–270
doi: 10.1049/iet-sen.2012.0163
increasing the number of ‘Adaptors’, the complexity problem
starts and hinders the developing task. We solve this problem
using ‘Adaptors’ in a hierarchical network. If interactions can
be encapsulated in different ‘Adaptors’, the developers can
focus on the particular adaptation for any sub-problem. This
encapsulation has important advantages in design,
development and debugging time. Expanding, testing and
replacing ‘Adaptors’ in required time can be possible as
well. Networks are built by composition of ‘Adaptors’. This
composition is based on synchronisation vectors that
orchestrate the whole network with different
synchronisation patterns called relations.
This section represents how a network of ‘Adaptors’ can be

built. We previously defined the system with RTS and
modelled it. Now we generate a complete system that can
be fed into model-checking tools. We also show how two
‘Adaptors’ can be exchanged in runtime, in a way that
system does not need any shutting down for this
reconfiguration.

Definition 3.5: A tuple as ANet = (S, W , R) defines a
network of ‘Adaptors’ such that:

† Σ = ΣI ∪ ΣO ∪ ΣH.
† W is a set of ‘Adaptors’ ‘that are in RTS form. For all Ap ∈
W, S

#
Ap

= S
obv
Ap

< {1}.

† R # S# ×∏
S#
Ap

{ }
< r∗

{ }
is indexed by SI <

⋃
SO
Ap
.

In the definition above, Σ shows all the events that affect
the system, they can be an input event from the
environment or input event from internal ‘Adaptors’
SI = SI < SI

env

( )
or maybe an output event from other

‘Adaptors’ (ΣO) or internal event in any ‘Adaptor’ (ΣH)
(Fig. 7).

R is a synchronisation vector that describes a particular
synchronisation pattern between the two ‘Adaptors’. The

first part, S# ×∏
S#
Ap

{ }
, shows the vector can include

configurations from current ‘Adaptor’. For example, when
the client connects to the network for the first time, this
vector selects the proper ‘Adaptor’ that should work with
the client or when several clients work with the network in
parallel, this vector synchronises the overall network at each
transaction. When an ‘Adaptor’ needs to reconfigure to
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another, builds the synchronisation vector {r*}. With this
event, the system knows which part requested for
reconfiguration and also the target ‘Adaptor’ in this
reconfiguration.
For making sure that any changes in the network affect the

‘Adaptors’, we present the following theorem.

Theorem 3.6: Consider a RTS network N = (ΣN, W, R) and
LN = (s0N , SN , SLN

, DN ) be the synchronisation product of
N, and ξ be a trace of any RTS ℓ from s0ℓ. We prove any
event e∈ ΣN leads RTS components to take a step. This
step could be configuration (internal in RTSs) or
reconfiguration (causes change in RTSs).

Proof: We prove this theorem by induction on set of events
and steps.

1. If e [ SI
N then ∀ℓ [ W , if ∃s0 [ S ^ pℓ s0

( ) = e, if
s0, e, s′
( )

[ Dℓ ⇒ s0, e, s′
( )

[ DN . That means if e be an
input event of the network and this event causes any RTS
ℓ [ W to take a step, then this step is a step of
synchronisation product of the network.
2. If ∃e1, e2, . . . , em−1 [ S

H
N , if em [ S

H
N then ∀ℓ [

W , pℓ s( ) = e and s, e, s′
( )

[ Dℓ ⇒ s, e, s′
( )

[ DN . That
means if we have a set of internal events of the network
and if the next event is also an internal event, then this
event causes the responsible RTS to take a step and this
step is considered as a step of synchronisation product of
the network.
3. If ∃e1, e2, . . . , em−1 [ S

H
N , if em [ S

ctrl
N , if ∃ℓ [

W ^ s∗i [ Sℓ then ∃r∗ [ R, rr∗ = ℓ ^ e = prr∗ r∗
( )

and
∃ℓ′ [ W , hr∗ = ℓ′ ^ s∗j [ Sℓ′ ⇒ (s∗i , e, s∗j ) [ DN .
That means if we have a set of internal events of the

network and if the next event is from controllable event of
LN, and if we have a RTS ℓ [ W , in which we have a
reconfiguration step s∗i , from which ℓ wants to start
reconfiguration, then ℓ creates a synchronisation vector r*
that sends event e to its consumer ℓ′. After reconfiguration,
ℓ′ starts to work from state s∗j . We note that trace ξs can be
used to reach this state in ℓ′.
4. If ∃e1, e2, . . . , em−1 [ SH

N , if em [ SO
N then ∃ℓ [

W , ∃r [ R, rr = ℓ ^ e = penv(r) ⇒ (s, e, env) [ DN .
That means if we have a set of internal events in the

network and the next event is an output event of the
network, then we have a RTS ℓ [ W and a synchronisation
vector r that ℓ produces. This vector leads the network to
have an output to the environment. As a result (s, e,
env)∈ ΔN.
5. If ∃e, such that e � SN then ∀ℓ ∈ W, if ℓ is in state s then
πℓ(s) = ε.
That means if an event is not a part of the network, then it is

idler for the network and causes no effect. □

Theorem 3.6 indicates that any event in a network has a
response that affects the overall RTSs. In that case we can
ensure that in a network with proper synchronisation
vectors, the system meets its goals. Lemma 3.7 will show a
detailed version of Theorem 3.6 that uses trace projection to
represent what happened in a specific RTS composite in a
synchronised network.

Lemma 3.7: Consider a RTS Network N = (Σ, W, R) and a
RTS ℓ [ W . Let LN be the synchronisation product of N
and r* be a synchronisation vector for reconfiguration that
maps an output event of any RTS ℓ′, which is other than
ℓ, into the corresponding input event of ℓ. RTS ℓ′ causes
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the RTS ℓ to take an input step. Let i, j∈ reconfiguration
states. The trace projection of σ in the network with respect
to ℓ is defined as below:

1. pℓ sn

( ) = pℓ sn−1

( )
, if e [ lpℓ

2. sn

( ) = e.pℓ sn−1

( )
, if e [ SH

ℓ

3. pℓ s1

( ) = e.pℓ si

( )
, if e [ SO

ℓ∗ and, ∃r∗, e = p r∗
( )

and rr∗ = ℓ′, hr∗ = ℓ

4. pℓ sn

( ) = e.pℓ sn−1

( ) = pℓ′ sj

( )
, if e [ S

O
ℓ and, ∃r∗,

e = p r∗
( )

and hr∗ = ℓ′

5. pℓ sn

( ) = pℓ sn−1

( )
, if [ SO

ℓ and, ∄r∗, e = prr∗ r∗
( )

The trace projection pℓ sn

( )
on ℓ is an event sequence

consisting of events that ℓ takes while the network N
follows the trace ℓ from its initial state s0N . It is computed
recursively by considering each event e in σ sequentially. If
e is an internal event of ℓ then it is appended to the trace;
if e is an output event of any RTS ℓ′, other than ℓ, with a
synchronisation vector r* , and ℓ is the consumer of this
vector then the trace σ continues its sequence in state i of
RTS ℓ; if e is an output event of ℓ and ℓ should take a
reconfiguration with respect to synchronisation vector r*,
then the trace σ follow its sequence from state j of
consumer of r*; if e is an output event of ℓ and there is no
reconfiguration, then e is an output event of the network;
otherwise e is ignored.
4 Case study

In this section, we discuss a case study of ‘self-adaptive
behaviours in a decentralised system’. Iftikhar and
Weyns [25] presented a case study in which they used model
checking to verify behavioural properties of a decentralised
self-adaptive system. They formalised architectural model of
a decentralised traffic monitoring system and modelled it
with timed automata. The rational for choosing this case
study is that this system is able to adapt autonomously to
internal dynamics and changing conditions in the
environment. With our framework, this traffic monitoring
model can have dynamic reconfigurations and
self-compositions to achieve particular quality goals.
4.1 System specification

Traffic monitoring system provides information about traffic
jams. The main challenges of the system are: (i) inform
clients of dynamic changing traffic jams, (ii) realise this
functionality in a decentralised way and (iii) makes the
system robust to camera failures. The system consists of a
set of intelligent cameras which are distributed along the
road. An example of a highway is shown in Fig. 8.
The system components are:

1. Cars, that are in environment and move along the
subsequent viewing ranges of the cameras;
2. Cameras, which have three basic states. In normal
operation, the camera can be master with no slaves, master
of an organisation with slaves or it can be slave; and
3. Traffic monitor, that keeps track of the actual
traffic conditions based on the signals it receives from
the cars and determines traffic congestion. For each
camera, a traffic monitoring process instance is running all
the time.
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4.2 System operation

When the system is initialised, each camera belongs to a
single member organisation. However, when a traffic jam is
detected that spans the viewing range of multiple
neighbouring cameras, organisations on these cameras will
merge into one organisation. To simplify the management
of organisations and interactions with clients, the
organisations have a master/slave structure. The master is
responsible for managing the dynamics of that organisation
(merging and splitting) by synchronising with its slaves and
neighbouring organisations and reporting traffic jams to
clients. Therefore the master uses the context information
provided by its slaves about their local monitored traffic
conditions. At T0, the example in Fig. 8 shows four single
member organisations, org1 with agent1, org2 with agent2
and similar for org5 and org6. Furthermore, there is one
merged organisation, org34 with agent3 as master and
agent4 as slave. At T1, the traffic jam spans the viewing
range of cameras 2, 3 and 4. As a result, organisations org2
and org34 have merged to form org24 with agent2 as
master. When the traffic jam resolves, the organisation is
split dynamically.
Fig. 9 Templates

a Car processes
b Traffic monitor
c Camera processes
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4.3 System in our proposed framework

Iftikhar and Weyns use two scenarios that require adaptation.
Here, we just focus on one of them that needs dynamic
reconfiguration and composition. The scenario concerns the
dynamic adaptation of an organisation from T0 to T1,
where camera 2 joins the organisation of cameras 3 and 4,
after it monitors a traffic jam. For this purpose, the template
of cars, traffic monitor and cameras are needed. As shown
in Fig. 9a, cars enter and leave the viewing range of
cameras. Fig. 9b shows the traffic monitor in which
whenever a car enters into the viewing range of a camera,
the traffic monitor detects the car via the carEnt channel.
Similarly, when a car goes out of the range of a camera, the
traffic monitor detects this through the carLeave channel.
The traffic monitor determines a traffic jam by comparing
the total number of cars in its viewing range with the
‘Capacity’. Fig. 9c also shows the process of the cameras.
Each camera works with signals that receives from the cars
and gives to the traffic monitor.
To have safe connections between the three components of

the system, the adaptation contracts are added to the traffic
system. Contracts can regulate the transitions between
267
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Fig. 10 Algorithm 1: Adaptor of traffic system
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components. The adaptation contracts between these three
components are as below:

ACCCME = {Vcar,env =: kC: start! , E: start?l

Vcam,TM =: kC: check! , TM:Cong!‖ No− Cong!l

VTM, cam =: kTM:Cong? , C: Cong!l

Vcam,env

=: kC : SendReq IDn−1,n+1

( )
?,E : ReciveReq IDn−1,n+1

( )
!l

Vcam,env =: kC : Join ID( )?,E : Join(ID)!l
Vcam,env

=: kC : Slave ID( )!,E : Slave ID( )?l//change state VTM,cam

=: kTM : No− Cong?,C : No− Cong!l

Vcam,env =: kC : Apart!, env : Apart?l//change state

Vcam,env =: kC: 1, E: SendReq!l

Vcam,env =: kC: ReciveReq ID( )!, E: 1l
Vcam,TM =: kC: check! TM:Cong!‖ No− Cong!l

Vcam,env =: kC: No− Join?, E: 1l

Vcam,env =: kC:Join? , E: 1l

Vcam,env =: kC: 1, E: Slave!l

Vcam,env =: kC:Slave?, E: 1l //change state

}
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The adaptation contract consists of car processes, camera,
traffic monitor and environments. Here, ‘environments’
mean other ‘Adaptors’ that receive and send reconfiguration
signals and information about changing the ‘Adaptors’ into
single member organisation or organisations with master
and slaves. These signals are sent with synchronisation
vectors in the network. Algorithm 1 (see Fig. 10) shows the
way ‘Adaptors’ work.
Fig. 11 shows the ‘Adaptor’ of the traffic system.

Reconfiguration states are states 2, 7, 10 and 17, in which
‘Adaptors’ send and receive reconfiguration signals via
synchronisation vectors. Theorem 3.6 assures safe signal
transformation between several ‘Adaptors’ in networks.
Therefore, applying our framework to the common

modelling example, shows that the formal constructs
introduced in this paper are sufficient to specify the
requirements of the common component modelling
example. We were also able to reconfigure ‘Adaptors’, in
which the execution is not interrupted and the whole system
keeps running.

5 Conclusion and future work

This paper proposes a new framework for dynamic
reconfiguration of adaptive systems. We also claim that the
new framework is formal because we use a formal
language, that is, RTS to model the framework.
This framework has some properties to assure its

performance. They are listed as below:

1. Reconfiguration possible at runtime: The framework
creates dynamic reconfigurations. These reconfigurations
start from one ‘Adaptor’ and end in another. Since we
define particular states for reconfigurations, our framework
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Fig. 11 Adaptor of the traffic system
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supports runtime reconfiguration. In Theorem 3.6, part 3, we
describe this reconfiguration in detail. However, we assume
system designers select the reconfiguration states, but the
system can use history states to reconfigure automatically,
any time needed. The latter proposition is beyond the scope
of this paper and can be considered as a future work.
2. Elements can be substituted: If a software system is
viewed in a hierarchical manner, some parts of it can be
seen as independent composites. We can substitute these
composites by synchronisation vectors within the system
network. Runtime substitution of one component with
another one in lower level of composites is considered as a
future work. We can also easily substitute components in
earlier time of design by just adding or removing some
vectors of reconfiguration contract. Modelling with
reconfiguration contract and using a formal language
guarantees the safety of these substitutions.
3. Non-functional regulation possible: we know
non-functional properties can be reduced to functional ones.
Since contracts are based on ‘Adaptors’, this framework
takes account of non-functional properties too. We
discussed about this property in Section 2.4.
4. Formal reasoning about structure possible: our
framework is made of components that are connected to
each other in a formal way. All the relations of the
framework have mathematical descriptions. As a result, the
structure can be formally represented.
5. Management exogenous against endogenous: The base of
our framework is to use contracts and they just need
components and their response to actions. Since contracts
are between black box components, system management,
which is based on contracts, imposes without needing
access to the internal implementation of those components.
Moreover, with extending the system network, the only
responsible events would be just input and output ones. In
this case the use of RTS model emboss itself because, RTS
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composites decide when to produce outputs while the
environment gives them inputs.
6. Supervisory control possible: As defined in Section 3.7,
system designers select reconfiguration states. These
reconfigurations can substitute composites or servers. Since
designers can easily add or remove components by just
adding or removing adaptation contract vectors, then it is
possible to have external management in situations that it
needs an external control in additional of its original
actions. It means that, it is possible for the system designers
to add a reconfiguration that is not defined in earlier time.

We discussed some properties that the new framework
supports. Also somehow this framework can make reusing
components easier. On the other hand, we can improve
software adaptation to repair or update systems with
reconfiguring components and systems in urgent situations.
One can work on the traces of the system to provide

reconfiguration in any state to have more flexibility. History
states can be used to exchange ‘Adaptors’ whenever system
needs or wants to upgrade itself. Since this framework use
RTS meta-model and Jin introduces formal composition of
RTSs in his theses, we could say maybe it is possible to
work on formal composition of our framework.
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