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Abstract. Secure information flow checks whether sensitive informa-
tion leak to public outputs of a program or not. It has been widely used
to analyze the security of various programs and protocols and guarantee
their confidentiality and robustness.

In this paper, the problem of verifying secure information flow of con-
current probabilistic programs is discussed. Programs are modeled by
Markovian processes and secure information flow is specified by observa-
tional determinism. Then, two algorithms are proposed to verify obser-
vational determinism in the Markovian model. The algorithms employ
a trace-based approach to traverse the model and check for satisfiabil-
ity of observational determinism. The proposed algorithms have been
implemented into a tool called PRISM-Leak, which is constructed on
the PRISM model checker. An anonymity protocol, the dining cryptog-
raphers, is discussed as a case study to show how PRISM-Leak can be
used to evaluate the security of programs. The scalability of the tool is
demonstrated by comparing it to the state-of-the-art information flow
tools.
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1 Introduction

Secure information flow is an important mechanism to discover leakages in vari-
ous programs and protocols [3,28]. Leakages occur when an attacker infers infor-
mation about secret inputs of a program by observing its public outputs. In order
to detect leakages and prevent insecure information flows, a security property
needs to be defined to specify secure behavior of the program and a verification
method is used to check whether the property holds or not.

Many security properties have been introduced in the literature, including
observational determinism, which specifies secure information flow for concur-
rent programs. Introduced by McLean [17] and Roscoe [26] and improved by
Zdancewic and Myers [32] and many others [9,12,14,15,20,21,31], observational
determinism requires a concurrent program to produce traces, i.e., sequences
of public values, that appear deterministic and thus indistinguishable to the
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attacker. However, existing definitions of observational determinism are not pre-
cise enough and are rather too restrictive or too permissive. An ideal security
property should be restrictive enough to reject insecure programs and permis-
sive enough to accept secure programs. Furthermore, most of these definitions are
scheduler-independent [9,12,14,15,21,31,32]. Since the security of a concurrent
program depends on the choice of a scheduler and might change by modifying
the scheduler, observational determinism needs to be defined scheduler-specific
[20].

For verifying satisfiability of observational determinism, various methods,
including type systems [31,32], logics [9,12,14] and algorithmic verification
[15,20,21] have been used. Type systems are often too restrictive and non-
automatic. Logic-based methods can be precise, but require a significant amount
of manual effort. Algorithmic verification is automatic, but existing methods are
not scalable. In fact, there is no automatic and scalable algorithmic verification
tool for checking observational determinism.

In this paper, an automatic approach is proposed to specify and algorith-
mically verify observational determinism for concurrent probabilistic programs
using the PRISM model checker. Assume a concurrent program that contains
probabilistic modules with shared variables and a probabilistic scheduler that
determines the execution order of statements of the modules. The program con-
tains public, secret and possibly neutral variables. The set of public variables is
denoted by L. Furthermore, assume an attacker that is able to pick a scheduler,
run the program under control of the scheduler and observe the program traces.
The attacker does not influence the initial values of the public variables, i.e., the
program has no public input.

Considering these assumptions, we model programs using Markovian pro-
cesses. Observational determinism is defined to be scheduler-specific and more
precise. It contains two conditions, OD1 and OD2, which a program needs to
satisfy both to be observationally deterministic. OD1 requires prefix and stutter
equivalence for traces of each public variable and OD2 enforces existential stutter
equivalence for traces of all public variables. To verify these conditions, two trace-
based algorithms are proposed. The proposed approach has been validated by
implementing the algorithms in PRISM-Leak [24], which is a tool for evaluating
secure information flow of concurrent probabilistic programs. PRISM-Leak has
been built upon the PRISM model checker [16] to check the security of PRISM
programs. Finally, a case study is discussed and the scalability of the proposed
algorithms is compared to the state-of-the-art tools of information flow analy-
sis. The experimental results show that PRISM-Leak has the best performance
among the tools that are capable of analyzing the case study.

In summary, the paper contributes to the literature by

– a formal definition of observational determinism on a Markovian program
model,

– two algorithms to verify the conditions of observational determinism,
– an automatic and scalable tool to verify observational determinism for con-

current probabilistic programs defined in the PRISM language.
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The paper proceeds as follows. Section 2 provides the core background on the
Markovian processes, the dining cryptographers protocol and various types of
information flow channels considered in this paper. Section 3 discusses the related
work and their strengths and weaknesses. Section 4 presents a formal definition
of observational determinism and Sect. 5 proposes two verification algorithms. In
Sect. 6, the verification algorithms are evaluated and compared to the existing
approaches. We conclude the paper in Sect. 7 and discuss some future work.

2 Background

2.1 Markovian Models

Markovian models allow us to define states and transitions containing enough
information to extract all traces of a program that are visible to the attacker.
Markov decision processes (MDPs) are used to model operational semantics of
concurrent probabilistic programs. Furthermore, memoryless probabilistic sched-
ulers, a simple but important subclass of schedulers, are used to denote sched-
ulers of concurrent programs. When a memoryless probabilistic scheduler is
applied to an MDP, a Markov chain (MC) is produced, which is the final model
used in this paper for specifying observational determinism and verifying it. Here,
the notations used throughout the paper are formally defined. For more infor-
mation on how Markovian models and schedulers work, please see chapter 10 of
[1].

Definition 1. A Markov decision process (MDP) is a tuple M =
(S,Act,P, ζ, V alL, V ) where S is a set of states, Act is a set of actions,
P : S × Act × S → [0, 1] is a transition probability function such that ∀s ∈
S. ∀α ∈ Act.

∑

s′∈S

P(s, α, s′) ∈ {0, 1}, the function ζ : S → [0, 1] is an initial

distribution such that
∑

s∈S

ζ(s) = 1, V alL is the finite set of values of the public

variables and V : S → V alL is a labeling function.

An MDP M is called finite if S, Act, and V alL are finite. An action α is
enabled in state s if and only if

∑

s′∈S

P(s, α, s′) = 1. Let Act(s) denote the set

of enabled actions in s. In our program model, actions represent the program
statements.

An MDP with no action and nondeterminism is called a Markov Chain.

Definition 2. A (discrete-time) Markov chain (MC) is a tuple M =
(S,P, ζ, V alL, V ) where P : S × S → [0, 1] is a transition probability function
such that ∀s ∈ S.

∑

s′∈S

P(s, s′) = 1. The other elements, i.e., S, ζ, V alL and V

are the same as MDP.

Given a state s, a memoryless probabilistic scheduler returns a probability
for each action α ∈ Act(s). This random choice is independent of what has
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happened in the history, i.e., which path led to the current state. This is why
it is called memoryless. Let D(X ) denote the set of all probability distributions
over a set X . Formally,

Definition 3. Let M = (S,Act,P, ζ, V alL, V ) be an MDP. A memoryless
probabilistic scheduler for M is a function δ : S → D(Act), such that δ(s) ∈
D(Act(s)) for all s ∈ S.

As all nondeterministic choices in an MDP M are resolved by a scheduler δ,
a Markov chain Mδ is induced. Formally,

Definition 4. Let M = (S,Act,P, ζ, V alL, V ) be an MDP and δ : S → D(Act)
be a memoryless probabilistic scheduler on M. The MC of M induced by δ
is given by

Mδ = (S,Pδ, ζ, V alL, V )

where
Pδ(s, s′) =

∑

α∈Act(s)

δ(s)(α).P(s, α, s′).

In what follows, we fix an MC MP
δ = (S,Pδ, ζ, V alL, V ) which models the

executions of the concurrent probabilistic program P under the control of a sched-
uler δ. A state of MP

δ indicates the current values of variables, together with the
current value of the program counter that indicates the next program statement
to be executed. The function V labels each state with values of the public vari-
ables in that state. In fact, a state label is what an attacker observes in that
state.

The set of successors of s is defined as Post(s) = {s′ | Pδ(s, s′) > 0}. The
states s with ζ(s) > 0 are considered as the initial states. The set of initial
states of MP

δ is denoted by Init(MP
δ). To ensure MP

δ is non-blocking, we include
a self-loop to each state s that has no successor, i.e., Pδ(s, s) = 1. Then, a state
s is called final if Post(s) = {s}. It is assumed that all final states correspond
to the termination of the program.

A path (or execution path) π of MP
δ is an infinite state sequence s0s1 . . . sω

n

such that s0 ∈ Init(MP
δ), si ∈ Post(si−1) for all 0 < i ≤ n, sn is a final state

and ω denotes infinite iteration (self-loop over sn). The set of paths starting
from a state s is denoted by Paths(s). The set of all paths of MP

δ is denoted by
Paths(MP

δ).
A trace of a path π = s0s1 . . . sω

n is defined as T = trace|L(π) =
V (s0)V (s1) . . . V (sn)ω. We refer to n as the length of T , i.e., length(T ) = n. The
labeling function, instead of all public variables, can be restricted to just a single
public variable l ∈ L, i.e., V|l : S → V all. Then, the trace of π on l is defined
as T|l = trace|l(π) = V|l(s0)V|l(s1) . . . V|l(sn)ω. Note that T|L = trace|L(π). The
set of traces starting from a state s is denoted by Traces(s). The set of all trace
of MP

δ is denoted by Traces(MP
δ).

Two traces T and T ′ are stutter equivalent, denoted T � T ′, if they
are both of the form A+

0 A+
1 A+

2 . . . for A0, A1, A2, · · · ⊆ V alL where A+
i is the
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Kleene plus operation on Ai and is defined as A+
i = {Ak

i | k ∈ N, k ≥ 1}. A
finite trace T1 is called a prefix of T , if there exists another infinite trace T2 such
that T1T2 = T . Two traces are prefix and stutter equivalent, denoted by
�p, if one is stutter equivalent to a prefix of another. For example, the traces
[0, 0, 0, 1, 1ω] and [0, 1, 1, 1ω] are stutter equivalent and the traces [0, 0, 0, 2, 1ω]
and [0, 2, 1, 1, 4, 4ω] are prefix and stutter equivalent.

A state s is low-equivalent to another state s′, written s =L s′, if V (s) =
V (s′). Low-equivalence can also be defined on a single public variable l ∈ L:
s =l s′ if V|l(s) = V|l(s′). This relation corresponds to the observational power
of the attacker. When two states are low-equivalent, they are the same to the
attacker, even if secret values differ in these states.

DAG Structure of Markovian Models. We assume the programs always terminate
and states indicate the current values of the variables and the program counter.
Furthermore, loops of the program are unfolded. This implies that Markovian
models of every program takes the form of a directed acyclic graph (DAG),
ignoring later-added self-loops of final states. Initial states of the program are
represented as roots of the DAG and final states as leaves. Therefore, there is no
loop in the Markovian models (except later-added self-loops) and all path lead
to a final state.

2.2 Dining Cryptographers Protocol

We use the dining cryptographers protocol [7] as a base to compare precision
of various definitions of observational determinism. It is well-known and highly-
studied anonymity protocol and thus suitable for comparison purposes.

In the dining cryptographers protocol, n cryptographers are having dinner
at a round table. After dinner, they are told that the dinner has been paid
by their master or one of the cryptographers. They want to know whether the
master has paid the dinner or not, without revealing the identity of the payer
cryptographer, if the master did not pay. Hence, each cryptographer tosses an
unbiased coin and shows the result only to the right cryptographer. If the two
coins that a cryptographer can observe are the same, then she announces ‘agree’;
otherwise, announces ‘disagree’. However, if she is the actual payer, then she
announces ‘disagree’ for the same coins and ‘agree’ for the different ones. If n
is odd, then an even number of ‘agree’s implies that one of the cryptographers
has paid, while an odd number implies that the master has paid. The latter is
reverse for an even n.

Assume an external attacker (none of the cryptographers or the master)
who tries to find out the payer’s identity. The external attacker can observe the
announcements of the cryptographers. Two cases are assumed for the secret, i.e.,
the payer:

1. one of the cryptographers, i.e., V alpayer = {c1, . . . , cn},
2. the master (m, for short) or one of the cryptographers, i.e., V alpayer =

{m, c1, . . . , cn}.
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For the first case, where the payer is one of the cryptographers, the protocol is
secure and there is no leakage. But for the second case, where the master is also
a candidate to be the payer, the protocol is insecure [7]. Therefore, it is expected
for a security definition to classify the first case as secure and the second case
as insecure.

2.3 Information Flow Channels

Information flow channels are mechanisms that transfer secret information to
the attacker. There are various types of channels: direct, indirect, possibilistic
[6], termination behavior [14], internally observable timing [27], probabilistic [6],
and externally observable timing [29].

Direct channels occur when the value of a secret variable is directly assigned
to a public variable. Indirect channels occur when the control structure of the
program reveals secret information. Possibilistic channels occur in concurrent
programs when an interleaving of the components results in a direct or indirect
channel. Termination channels reveal secret information through the termination
or non-termination of program execution. Internally observable timing channels
happen when secret information affects the timing behavior of a module, which,
through the scheduler, influences the execution order of updates to public vari-
ables. Probabilistic channels leak sensitive information through the probabilistic
behavior of the program. Externally observable timing channels occur when sen-
sitive information affect the timing behavior of the program.

3 Related Work

In this section, existing definitions of observational determinism are presented
and compared to each other. We formalize all these definitions in our program
model MP

δ in order to make the comparison and discussion easier. Since we
assumed the attacker does not influence the initial values of the public variables,
all the initial states are low-equivalent, i.e., s0 =L s′

0. A concurrent program P
under a scheduler δ satisfies observational determinism, according to

– Zdancewic and Myers [32], if and only if all traces of each public variable are
prefix and stutter equivalent, i.e.,

∀T, T ′ ∈ Traces(MP
δ), l ∈ L. T|l �p T ′

|l;

– Huisman et al. [14], iff all traces of each public variable are stutter equivalent,
i.e.,

∀T, T ′ ∈ Traces(MP
δ), l ∈ L. T|l � T ′

|l;

– Terauchi [31], iff all traces of all public variables are prefix and stutter equiv-
alent, i.e.,

∀T, T ′ ∈ Traces(MP
δ). T|L �p T ′

|L;
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– Huisman and Blondeel [12], Karimpour et al. [15] and Dabaghchian and
Abdollahi [9], iff all traces of all public variables are stutter equivalent, i.e.,

∀T, T ′ ∈ Traces(MP
δ). T|L � T ′

|L;

– Ngo et al. [20], iff the following two conditions are satisfied:
SSOD-1: ∀T, T ′ ∈ Traces(MP

δ), l ∈ L. T|l � T ′
|l;

SSOD-2: ∀s0, s
′
0 ∈ Init(MP

δ),∀T ∈ Traces(s0),∃T ′ ∈ Traces(s′
0). T|L � T ′

|L;
– Noroozi et al. [21], iff all paths of all public variables are divergence weak

low-bisimilar, i.e.,

∀π, π′ ∈ Paths(MP
δ). π ≈div

L π′,

where divergence weak low-bisimulation (≈div
L ) is an equivalence relation that

relates two paths that mutually mimic behavior of each other.

Note that all these definitions, except Ngo et al. [20], are scheduler-independent
and consider all possible interleavings of the modules. We redefined them in our
scheduler-specific model in order to make the comparison easier.

Zdancewic and Myers define observational determinism in terms of prefix
and stutter equivalence of traces of each public variable. This definition cor-
rectly accepts the first case of the dining cryptographers protocol. However, it
incorrectly accepts the second case too. This shows that the definition is too per-
missive. On the other hand, requiring stutter equivalence of traces of each public
variable, as in Huisman et al. [14], is too restrictive and incorrectly rejects the
first case of the protocol. Furthermore, requiring traces to agree on the updates
to all public variables, as in [9,12,15,21,31], is too restrictive. For example, the
first case of the dining cryptographers protocol is incorrectly rejected by all
of these definitions. In our experiments with different programs, we found the
definition of Ngo et al. [20] the most precise of all. However, SSOD-1 was not
permissive enough. For example, it incorrectly rejected the first case of the dining
cryptographers.

Observational determinism has also been defined using traces of opera-
tions that read or write on public variables, instead of traces of public values.
Well-known examples of these definitions are LSOD [10] and its improvements,
RLSOD [10] and iRLSOD [6]. These definitions have been implemented in a tool,
named JOANA [11], which uses program dependence graphs to model JAVA pro-
grams and verify them. JOANA does not explicitly classify variables into public
or secret. However, it offers the ability to classify program statements into low
(public) or high (secret). Thus, a variable might contain a public value at one
point of the program, but a secret value at another point. This allows JOANA
to detect intermediate leakages if a statement in intermediate steps is labeled as
low. The use of program dependence graphs makes JOANA a scalable tool but
reduces its precision. LSOD [10] and its relaxed forms, RLSOD [10] and iRLSOD
[6] incorrectly produced security violations for many examples we tried, includ-
ing the first case of the dining cryptographers protocol. JOANA only works
with dependencies and does not take into account concrete values of variables or
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explicit probability distributions, as in the dining cryptographers protocol. This
is an inherent limitation for all analyses that are based on program dependence
graphs.

There are probabilistic versions of observational determinism for concurrent
programs, such as probabilistic noninterference [19,23,29,30]. These properties
match transition probabilities, in addition to the traces. This is a rather strong
condition which can detect probabilistic channels but is too restrictive for most
cases and programs.

To verify observational determinism, Zdancewic and Myers [32] and Terauchi
[31] use type systems, which are widely used to verify secure information flow.
However, they are not extensible [2]. They can be defined compositional, but at
the cost of either being too restrictive or losing automatic analysis [6].

Huisman et al. [14], Huisman and Blondeel [12], Huisman and Ngo [13] and
Dabaghchian and Abdollahi [9] use logic-based methods to specify observational
determinism and verify it. These methods build a self-composed model [2] of the
program. Then, observational determinism is specified using a program logic,
such as CTL*, modal μ-calculus, LTL or CTL. Out of these methods, Huis-
man and Blondeel [12] and Dabaghchian and Abdollahi [9] have verified the
specified property using the model checking tools Concurrency Workbench and
SPIN, respectively. In contrast to type systems and program dependence graphs,
logical-based methods can specify arbitrarily precise definitions for observational
determinism. Most of these methods are compositional. However, they are often
non-automatic and require a significant amount of manual effort.

Ngo et al. [20], Karimpour et al. [15] and Noroozi et al. [21] use algorith-
mic verification methods. These methods mostly model the program as a state
transitions system and specify the property using states, paths, and traces of
the transition system. Ngo et al. [20] model programs using Kripke structures
and use a trace-based method to verify SSOD-1. In order to verify SSOD-2, they
determinize the Kripke model and compute a bisimulation quotient of the deter-
minezed model. The time complexity of verifying SSOD-1 is linear in the size
of the model, whereas verifying SSOD-2 is exponential. Karimpour et al. [15]
and Noroozi et al. [21] compute a weak bisimulation quotient of the model and
then verify observational determinism. Algorithmic verification methods make
it possible to specify secure information flow with arbitrary precision. They are
fully-automatic but generally less scalable, in comparison with type systems and
program dependence graphs.

A closely-related filed to secure information flow is quantitative information
flow, in which information theory is used to measure the amount of information
leakage of a program. If the leakage is computed to be 0, then the program is
secure. Many methods and tools are available to compute the information leak-
age of various programs, including LeakWatch [8], QUAIL [5], HyLeak [4] and
PRISM-Leak [24]. LeakWatch [8] estimates leakage of Java programs, includ-
ing multi-threaded programs and taking into account the intermediate leakages.
QUAIL [5] precisely computes leakage at final states of sequential programs, writ-
ten in the QUAIL imperative language. HyLeak [4] is an extension of QUAIL



162 A. A. Noroozi et al.

and combines estimation and precise methods in order to improve the scalability.
Finally, PRISM-Leak [24] contains a quantitative package that uses a trace-based
method [22] to precisely compute leakage of concurrent probabilistic programs,
written in the PRISM language [16]. In quantifying information leakage, PRISM-
Leak takes into account the intermediate leakages occurred in the intermediate
steps of the program executions.

4 Specifying Observational Determinism

In this section, observational determinism is defined in the Markovian model
MP

δ. The definition should be able to detect direct, indirect, possibilistic, inter-
nally observable timing and termination channels. In order to detect external
timing or probabilistic channels, the security property should be strengthened
further. For example, to detect external timing channels, the property should
require equivalence of traces. This makes the property too restrictive, which is
the exact opposite of this paper’s goal. Therefore, external timing and proba-
bilistic channels are not considered in this paper.

As Ngo et al. [20] discuss, a concurrent program might be secure with a
scheduler and insecure with another one and thus defining observational deter-
minism to be scheduler-independent makes the definition imprecise. Therefore,
we define observational determinism to be scheduler-specific. Another benefit of
a scheduler-specific property is that it is able to find those schedulers that the
program is insecure under control of them. This makes the property immune to
refinement attacks, in which the attacker selects a scheduler in order to limit
the set of possible traces of the program and infer secret information from these
traces.

Observational determinism requires a concurrent program to be determin-
istic to the attacker and produce indistinguishable traces. It demands that
low-equivalent inputs produce low-equivalent traces and thus changes in the
secret inputs do not change the public behavior. Inspired by Ngo et al. [20], we
define observational determinism scheduler-specific and require existential stut-
ter equivalence for traces of all public variables. However, we relax the require-
ment of stutter equivalence for traces of each public variable to prefix and stutter
equivalence in order to improve precision and thus reduce the number of false
alarms.

Definition 5. Let MP
δ be a Markov chain, modeling executions of a concurrent

probabilistic program P under the control of a scheduler δ. Formally, P satisfies
observational determinism, iff OD1 and OD2 hold:

OD1: ∀T, T ′ ∈ Traces(MP
δ), l ∈ L. T|l �p T ′

|l,
OD2: ∀s0, s

′
0 ∈ Init(MP

δ),∀T ∈ Traces(s0),∃T ′ ∈ Traces(s′
0). T|L � T ′

|L.

OD1 requires that traces agree on the updates to each public variable. This
requirement enforces deterministic observable behavior and thus the secret data
do not affect the public variables.
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OD2 requires that there always exists a matching trace of all public variables
for any possible initial states. This requirement results in the independence of
the relative ordering of updates to the public variables from the secret values.

Both OD1 and OD2 correctly recognize the first case of the dining cryptog-
raphers protocol as secure. OD1 labels the second case secure, but OD2 labels
it insecure. Therefore, our definition of observational determinism correctly rec-
ognizes the first case as secure and the second case as insecure.

For an example of an indirect channel, consider the following program, from
Huisman et al. [14]

P1 ≡ while h>0 do
l1:=l1+1;
h:=h-1

od;
l2:=1

where h is a secret variable and l1 and l2 are public variables, initially set to 0.
The program is insecure, because the final value of l1 contains the initial value
of h. It produces the following traces of all public variables

h ≤ 0 : [(0, 0), (0, 1)ω],
h == 1 : [(0, 0), (1, 0), (1, 1)ω ],
h == 2 : [(0, 0), (1, 0), (2, 0), (2, 1)ω ],
h == 3 : [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1)ω ],

...

If we consider the public variables separately, the traces [0ω], [0, 1ω], [0, 1, 2ω],
[0, 1, 2, 3ω], . . . for l1 and the traces [0+, 1ω] for l2. Obviously, the separate
traces are stutter and prefix equivalent and thus OD1 holds for this program.
However, OD2 does not hold, because for the trace [(0, 0), (0, 1)ω], for example,
there does not exist a stutter equivalent trace of other initial states. Therefore,
our definition of observational determinism detects the termination channel of
this program.

Allowing prefixing in OD1 makes it vulnerable to termination channels [14].
However, these channels are detected by OD2, which requires existential stut-
ter equivalence. For example, consider the following program, which contains a
termination channel

P2 ≡ if h>0 then l:=1 else S1 fi

where

S1 ≡ while true do skip od

where l is a public variable, with the initial value of 0. The attacker can infer
truth value of h>0 from termination of the program. P2 has the following traces

h > 0 : [0, 1ω],
h ≤ 0 : [0ω].
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OD2 does not hold and thus observational determinism detects this channel.
As an example of a possibilistic channel, consider the following program, from

Ngo [18]

P3 ≡ [S2 || S3]

where

S2 ≡ if l=1 then l:=h else skip fi
S3 ≡ l:=1

and l is initially set to 0 and || is the parallel operator with shared variables.
The modules S2 and S3 are secure if they are run separately. However, concurrent
execution of the modules under a uniform scheduler might reveal the whole value
of h. P3 under a uniform scheduler has the following traces

S2 is executed first: [0, 0, 1ω],
S3 is executed first: [0, 1, hω].

OD2 does not hold and thus our definition correctly labels this program as inse-
cure. This example also demonstrates the importance of defining observational
determinism scheduler-specific. If P3 is executed by a scheduler that always picks
S2 first, then the program would be secure. However, it is insecure for a uniform
scheduler. Therefore, the security of a concurrent program should be discussed
in the context of a given scheduler.

For internally observable timing channels, consider the following program,
from Russo et al. [27]

P4 ≡ [S4 || S5]

where

S4 ≡ if h ≥ 0 then skip; skip
else skip fi;

l:=1
S5 ≡ skip; skip; l:=0

and l has the initial value of 0. Under a one-step round-robin scheduler that
picks S5 for the first step, the following traces are produced

h ≥ 0 : [0, 0, 0, 0, 0, 0, 1ω ],
h < 0 : [0, 0, 0, 0, 1, 0ω].

The truth value of h ≥ 0 is leaked into l. OD2 does not hold and hence obser-
vational determinism detects this channel.

5 Verifying Observational Determinism

In this section, two algorithms are proposed for verifying the conditions OD1

and OD2. The algorithms take MP
δ as input and return true or false for the

satisfaction of the conditions. Both algorithms incorporate a path exploration
and trace analysis approach to traverse MP

δ and check the required conditions.
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5.1 Verifying OD1

OD1 requires that all traces of MP
δ be prefix and stutter equivalent. To verify

this, a depth-first exhaustive path exploration of MP
δ is performed and prefix and

stutter equivalence is checked between the traces. Once a violation is detected,
the algorithm stops the exploration and returns false; otherwise, it continues
until the exploration is complete and returns true.

The detailed steps are outlined in Algorithm1. For each l ∈ L, the algorithm
uses a witness stutter-free trace for checking whether prefix and stutter equiva-
lence between the traces holds or not. The witness might be changed to another
stutter-free trace running the algorithm. First, an empty string is considered as a
witness for each l (lines 1 and 2). Then, MP

δ is explored by a depth-first recursive
function, i.e., explorePathsOD1(). In order to explore all reachable states, the
function is called for each initial state (lines 4 and 5). It starts from a state and
traverses all successors of that state (lines 25–26) until a final state is reached
(line 11), which shows that a path has been found. When the algorithm finds a
path, for each public variable l (line 12) it performs the following steps to check
prefix and stutter equivalence (lines 12–23). It extracts a trace (line 13), removes
stutter data from it (line 14) and picks the corresponding witness (line 15). If
the witness is longer than the trace, then a prefixing test is done: if the trace is
not a prefix of the witness, then a violation of OD1 has been found and the algo-
rithm returns false (lines 16–18). If the witness is shorter than the trace, then
the second prefixing test is done: if the witness is not a prefix of the trace, then
a violation of OD1 has been found and the algorithm returns false; otherwise
(the witness is a prefix of the trace), the trace is longer than the witness and it
should be the witness for l (lines 19–23). This process continues until a violation
is found, for which false is returned; or all paths are explored without finding a
violation and true is returned.

Time Complexity. The number of possible paths of a DAG can be exponential
in the number of its states. This implies that the core of Algorithm1, i.e., finding
all the possible paths using depth-first exploration takes time O(2n) in the worst
case, where n is in the number of states of MP

δ. Lines 13–23 for extracting the
trace of a path, removing stutter steps and checking prefixing takes O(n) in the
worst case. These lines repeat for all l ∈ L and take time O(n ∗ |L|). Therefore,
the worst-case time complexity of Algorithm 1 is exponential in the number of
states of MP

δ. Note that if the program is insecure, Algorithm 1 does not traverse
all the paths and stops as soon as a violation is found. Another point worthy of
note is that in most of our experiments, programs had a linear number of paths
and a few public variables and hence the total time complexity was linear in the
size of MP

δ.
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Algorithm 1. Verifying OD1

Input : finite MC MP
δ

Output : true if the program satisfies OD1; otherwise, false

// Consider an empty string as a witness for each public variable
1: for l in L do
2: Let witnesses[l] be an empty string;

3: Let π be an empty list of states for storing a path;
4: for s0 in Init(MP

δ) do
5: result = explorePathsOD1(s0, π, witnesses);
6: if not result then
7: return false;

8: return true;

9: function explorePathsOD1(s, π, witnesses)
10: π.add(s); // add state s to the current path from the initial state
11: if s is a final state then // found a path stored in π
12: for l in L do
13: T|l = trace|l(π);

14: Remove stutter data from T|l, yielding stutter-free trace T sf
|l ;

15: Tw = witnesses[l];
16: if length(T sf

|l ) ≤ length(Tw) then

17: if T sf
|l is not prefix of Tw then

18: return false;

19: else
20: if Tw is not prefix of T sf

|l then
21: return false;
22: else
23: witnesses[l] = T sf

|l ;

24: else
25: for s′ in Post(s) do
26: result = explorePathsOD1(s′, π, witnesses);
27: if not result then
28: return false;

29: π.pop(); // done exploring from s, so remove it from π
30: return true;

5.2 Verifying OD2

OD2 requires that, given two initial states s0 and s′
0 of MP

δ, for each trace of s0
there exists a stutter equivalent trace of s′

0. This condition can be interpreted
as requiring the initial states to have the same set of stutter-free traces:

OD2 : ∀s0, s
′
0 ∈ Init(MP

δ). T racessf (s0) = Tracessf (s′
0).

where Tracessf (s0) denotes the set of stutter-free traces of s0. To verify this,
a depth-first exhaustive path exploration of MP

δ is performed to store all the
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Algorithm 2. Verifying OD2

Input : finite MC MP
δ

Output : true if the program satisfies OD2; otherwise, false

1: Let π be an empty list of states for storing a path;
2: for s0 in Init(MP

δ) do
// Consider an empty set of stutter-free traces for each initial state

3: Let allT races[s0] be an empty set;
4: explorePathsOD2(s0, π, allT races);

5: for each pair of initial states (s0, s
′
0) do

6: if allT races[s0] ! = allT races[s′
0] then

7: return false;

8: return true;

9: function explorePathsOD2(s, π, allT races)
10: π.add(s); // add state s to the current path from the initial state
11: if s is a final state then // found a path stored in π
12: T|L = trace|L(π);

13: Remove stutter data from T|L, yielding stutter-free T sf
|L ;

14: s0 = π[0]; // initial state of π
15: allT races[s0].add(T sf

|L );
16: else
17: for s′ in Post(s) do
18: explorePathsOD2(s′, π, allT races);

19: π.pop(); // done exploring from s, so remove it from π
20: return ;

stutter-free traces of each initial state in a set and then the equivalence of the
sets is checked.

Algorithm 2 shows the detailed steps. It initiates an empty set for each initial
state (lines 2–3). Each set will contain stutter-free traces of the corresponding
initial state. The set of traces are extracted by the function explorePathsOD2(),
which recursively explores all states of MP

δ. When a final state is reached (line
11), the trace of the path from the initial state to the final state is extracted
(line 12), stutter removed (line 13) and stored in the corresponding set (lines
14–15). After extracting the set of stutter-free traces of all the initial states, the
equivalence of the sets is checked (lines 5–7). If they are all equivalent, then the
algorithm returns true; otherwise, false is returned.

Time Complexity. The core of Algorithm 2 is a depth-first exploration to find all
paths of MP

δ, which takes time O(2n) in the worst case. The final check for the
equivalence of the sets of traces takes worst-case complexity of O(t2), where t is
the number of initial states of MP

δ. Therefore, the time complexity of Algorithm 2
is dominated by a depth-first exploration of paths, which is exponential in the
size of MP

δ. As discussed in the complexity of Algorithm1, real-world programs
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in our experiments had linear time complexity and both algorithms showed a
high performance in practice.

6 Experimental Evaluation

In this section, the proposed algorithms are compared to other state-of-the-art
tools for information flow analysis. The algorithms have been integrated into
PRISM-Leak [24], which is a tool to evaluate secure information flow of concur-
rent probabilistic programs, written in the PRISM language [16]. PRISM-Leak
contains two packages, a qualitative package that checks observational determin-
ism using the algorithms of this paper and a quantitative package which measures
various types of information leakage using a trace-based algorithm [22].

PRISM-Leak is based on the PRISM model checker [16]. PRISM is a formal
modeling and analysis tool for probabilistic and concurrent programs. It has
been widely used in many application domains, including security protocols,
distributed algorithms, and many others. It uses the PRISM language to describe
programs and build Markovian models of them. It builds the models using binary
decision diagrams and multi-terminal binary decision diagrams. PRISM-Leak
accesses these data structures to create an explicit list of reachable states and a
sparse matrix containing the transitions. It then traverses the model based on
Algorithms 1 and 2 to check observational determinism. The source codes and
binary package of PRISM-Leak are available for download at [24].

The dining cryptographers protocol is used as a comparative case study.
As discussed in the related work, other definitions of observational determin-
ism [9,12,14,15,20,31,32] are imprecise for the dining cryptographers protocol.
JOANA, a scalable information flow tool, is also imprecise. The only remaining
choice for runtime comparison is the quantitative tools that were introduced in
the related work: LeakWatch [8], QUAIL [5], HyLeak [4] and PRISM-Leak [24].
These tools compute a leakage of 0 for the first case of the protocol and a leakage
greater than 0 for the second case.

We compare the runtime of the proposed algorithms and the quantitative
tools in Table 1 for the first case of the dining cryptographers protocol, where
the attacker is external and the master is not a candidate of being the payer.
Two columns of the table are allocated for PRISM-Leak: the first column, i.e.,
quantitative method, is for the quantitative package and the second column, i.e.,
observational determinism, is for the qualitative package which contains the algo-
rithms of this paper. Since QUAIL and HyLeak did not support concurrency, we
considered a sequential version of the dining cryptographers, which is available
at [24]. Table 2 compares the runtime of the tools for the second case, where the
attacker is external and the payer is the master or one of the cryptographers.
These run times have been obtained on a laptop with an Intel Core i7-2640M
CPU @ 2.80 GHz × 2 and 8 GB RAM.

As demonstrated by the results in both Tables 1 and 2, the proposed algo-
rithms are faster and more scalable than LeakWatch, QUAIL, and HyLeak and
comparable to the quantitative method of PRISM-Leak. In Table 1, the quan-
titative method of PRISM-Leak is faster than the proposed algorithms, but
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Table 1. Runtime comparison of the proposed algorithms to other tools for the first
case of the dining cryptographers protocol. Runtime is in seconds and timeout is set
to five minutes.

n LeakWatch [8] QUAIL [5] HyLeak [4] PRISM-Leak [24]

Quantitative
method [22]

Observational
determinism

7 2 1.8 30.5 0.6 0.7

8 3.7 3.1 39.7 0.8 1.2

9 7.5 6.3 55 1.3 1.9

10 15 12.6 72.2 2.9 3.9

11 32.2 26.5 97 7.3 9.6

12 72.4 62.1 135.4 18.7 25.2

13 150.7 151.6 249.3 49.9 66.7

14 Timeout Timeout Timeout 145.7 192.4

in Table 2, algorithms of this paper perform a little better. Note that cores of
both qualitative and quantitative packages of PRISM-Leak are the same. They
both rely on PRISM to construct the Markov model and use a sparse matrix
to access the model transitions. However, the quantitative method traverses the
model once to compute the leakage, but the qualitative package traverses it twice
(first for OD1 and second for OD2). In Table 2, observational determinism does
not hold and as soon as the qualitative package discovers that, stops the traver-
sal. This is why the qualitative package outperforms the quantitative method in
Table 2.

Table 2. Runtime comparison of the proposed approach to other tools for the second
case of the dining cryptographers protocol. Runtime is in seconds and timeout is set
to five minutes.

n LeakWatch [8] QUAIL [5] HyLeak [4] PRISM-Leak [24]

Quantitative
method [22]

Observational
determinism

7 3.1 2.4 30.8 0.6 0.6

8 6 4.5 41.7 1 0.9

9 12.3 9.7 57 1.5 1.4

10 28.2 17.5 75.3 3.5 3.3

11 60.5 35 99.3 7.7 7.4

12 122.1 78.5 144 20.4 20.5

13 Timeout 156.2 277.1 60.5 58.8

14 Timeout Timeout Timeout 215 211.8
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Runtime efficiency of PRISM-Leak mainly depends on the size of the Marko-
vian model built by the PRISM model checker and the model size can easily get
large. There are a few heuristics that can be performed when writing PRISM
descriptions in order to avoid large models. For example, closely-related variables
should be defined near each other; or variables that have a relationship with most
of the other variables should be defined first in the PRISM descriptions. For more
information on these heuristics, please see [25].

7 Conclusion

An algorithmic verification approach was proposed to check secure informa-
tion flow of concurrent probabilistic programs. Observational determinism was
defined as a specification of secure information flow. Comparisons to existing
definitions of observational determinism demonstrated that the proposed def-
inition is more precise. Furthermore, two algorithms were proposed to verify
observational determinism. The proposed algorithms have been integrated into
the PRISM-Leak tool. Experimental evaluations showed promising scalability
results for PRISM-Leak.

As future work, we aim to develop symbolic algorithms based on binary
decision diagrams to verify observational determinism. This can further improve
the scalability of PRISM-Leak. We also aim to use PRISM-Leak to evaluate
secure information flow of case studies from newer application domains.
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Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 89–93. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0 5

12. Huisman, M., Blondeel, H.-C.: Model-checking secure information flow for multi-
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